Quick Installation Guide

ABB Solar inverters

1. Choice of installation location

- Install at a height that considers the heaviness of the equipment
- Consider the noise (about 50dB(A) at 1 m) that the inverter makes during operation
- Be aware that efficient cooling and a power greater than the device going into service may cause:
 1. Power factor (harmonics in the inverter output); a reduced efficiency because of passivation on the application system
 2. Power losses in the electro-mechanical components

2. Inverter Models and Components

- General warning: Inversion, safety information
- Temperature range
- Poor static and negative pole of the input voltage
- Always use safety clothing and personal safety equipment
- Panel of connection for grounding protection
- Direct and alternating current, respectively
- Time need to discharge stored energy
- Number of input channels: 1
- DC disconnect switches

3. Environmental risks

- Do not install in places where gases or flammable substances may be present.
- Do not install in areas where people may enter or the protections present in a vessel or in a tank are expected, because of the noise (about 50dB(A) at 1 m) that the inverter makes during operation.
- Do not install in areas where it may not take place an anomaly.
- Do not install in areas where it may not be performed an anomaly. In case of request of the service password the field should be used on the inverter.

4. Lifts and transport

- Transport and handling: the equipment, especially by road, must be carried out with suitable ways and means for preventing the components from violent shocks, humidity, vibrations, etc.
- The means used for lifting must be suitable to be the weight of the equipment.

5. Opening the cover

- Remove the protective film located on the front.
- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.
- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.

6. List of supplied components

- CR2032 for circuit board
- GFI LED
- LED
- UNO power graph
- UNO DC disconnect switch
- UNO -S2
- UNO -S2F
- UNO -S2X
- UNO-PAC

7. Wall/Fix mounting

- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.
- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.
- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.
- Proceed to anchor the inverter to the bracket by lifting points n° 08 upwards in order to make all the necessary adjustments.
The Inverter is ON and OFF status when connected to the grid. If the Inverter is OFF status, the Inverter is ready for connection to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OFF status when not connected to the grid.

The Inverter is OF